Oil, Gas, & Mining

The Importance of Hand Protection: Superior Gloves Offer a Superior Product

Written by Oil, Gas, and Mining on . Posted in Safety

The Importance of Hand Protection
Superior Gloves offer workers superior protection for hand safety.

Gloves are one of the best known pieces of protective clothing with a rich and storied history that reaches back to the birth of modern civilization.  Ancient Egyptian boxers wore wrappings to protect their hands, and medieval knights and archers wore many types of gloves from leather finger guards to heavy metal gauntlets.  Baseball gloves made an appearance to protect players' hands in the late 1870's.  Doug Allison, a catcher for the Cincinatti Red Stockings, is the first player known to wear a glove in 1870.  And in 1875, Charlie Wait, a first baseman for St. Louis, was reported to wear a glove--not at all surprising that catchers and first basemen would be the first ball players to recognize the value of hand protection.

Fast forward to modern industry and the wearing of protective gloves is commonplace to protect workers from a variety of potential hand injuries:  cuts, abrasions and contusions; heat burns; electrical burns; harmful chemical exposure; just to name a few risks.  Of crucial importance is to use the right glove to protect against the type of risks involved with the work you are doing.  Leather, canvas or metal mesh gloves may prove most effective against cuts, burns and punctures; insulating rubber gloves may offer better protection against electrical hazards; while working with chemicals may demand the use of liquid resistant gloves.  There is no substitute, though, for being acutely aware of your company's safety policies and the safety precautions associated with any particular task or materials or machines and tools in use.  The United States Department of Labor's Occupational Safety and Health Administration offers rigorous guidance regarding personal protection equipment and hand protection at https://www.osha.gov.  While there are limits to any protective gear as pressures, heat, levels of toxicity, etc., climb to extreme levels, hopefully, wearing protective gloves will prevent injury from the more commonplace and less extreme workplace risks and save your all important fingers and hands from abuse--Gloves are truly a low cost solution to keep you safe!

Understanding the Physics of Blowouts and Their Prevention Approaches

Written by Nafiz Tamim, Ruochen Liu, M. Sam Mannan, and A. Rashid Hasan on . Posted in Oil and Gas

Understanding the Physics of Blowouts and Their Prevention ApproachesDespite multitier safeguards in any drilling/production operation, blowouts do occur. Over the past few decades many blowouts with serious consequences happened, such as Ekofisk Bravo blowout, Ixtoc I blowout, Enchova Central blowout, Kaixian blowout, and Deepwater Horizon blowout. SINTEF database (2016) reported a total of 263 blowouts incidents from 1980 to 2012 in the US Gulf of Mexico (GoM) Outer Continental Shelf (OCS) and North Sea. Thus, blowout prevention plays a crucial role in planning and decision making during any well activity. To design an efficient blowout prevention program, blowout release mechanism needs to be understood. Daily and total release of hydrocarbons from a blowout are very important parameters in designing prevention and mitigation plans. This requires a model that dynamically couples the wellbore flow to that from the reservoir.

Emission Comparison of Underground Trenchless Construction Methods for Canada's Oil and Gas Industry

Written by Chao Kang, Sadegh Mohit, Mahsa Ahmadian Nezhad Monfared, and Alireza Bayat on . Posted in Oil and Gas

Emission Comparison of Underground Trenchless Construction Methods for Canada's Oil and Gas IndustryThe oil and gas industry in Canada is a prosperous industry that involves the rehabilitation and/or installation of new pipelines and facilities, which results in an increase of greenhouse gas (GHG) emissions. This paper compares the amount of GHG emissions of pilot-tube micro tunneling (PTMT) and hand tunneling through a case study that involved replacing an old pipeline and installing a new pipeline. The project site was located in the northeast of Edmonton, Alberta, Canada in which PTMT and hand tunneling were used. In the calculation, the GHG emissions were classified as two parts: construction and transportation emissions. The indices used to specify the GHG emissions are the estimated masses of carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), nitrogen oxide (NOx), particulate matter (PM), and sulfur dioxide (SO2). The construction emissions calculations are functions of construction hours, type of equipment, loading factor, and emission factor. The transportation emissions calculations are mainly affected by equipment type, distance, and the number of trips required to transport material and equipment. The results indicate that for both methods, CO2 is the main source of GHG emissions. In an installation of the same size and length of pipeline, adopting PTMT would reduce the GHG emissions compared with using hand tunneling.

Soil and Revegetation Success in Response to Land Disturbances from Construction and Mining Activities

Written by Alex Zimmerman on . Posted in Mining

Soil and Revegetation Success in Response to Land Disturbances from Construction and Mining Activities"The good ground is gone" often refers to the challenging nature of construction sites these days. Building on steeper slopes, within tighter boundaries all the while accelerating construction schedules is adding to the challenge of construction managers. Often the revegetation and restoration is unfortunately not planned or timed for successful long-term vegetation success. Site soil conditions are frequently overlooked and the timing necessary for seed germination, expression, and establishment are rarely factors in determining the schedule of seeding applications for optimum results. All too often less than desired results or failure is the accepted outcome. This will increase the future maintenance costs and encourage the repeated “finger pointing” while seeking to blame one cause or another. Typically, this often-repeated process fails to address the fundamental causes and thereby rarely fixes the problems moving forward. In an effort to break out of this all too often repeated cycle lets break down the principle challenges and explore options for successful restoration of challenging sites.

How to Design a Net-Zero-Energy Solar Building (NSESB) for Mining or Oil and Gas Projects in China's Datong Region

Written by Changhai Peng, Wei Shen, and Xi Xi on . Posted in Mining

How to Design a Net-Zero-Energy Solar BuildingIt has been shown that solar energy can provide power to mining companies and become an important part of the energy supply to a large mine. This paper discusses an innovative application for implementing a net-zero-energy solar building NZESB in Datong mining or oil and gas projects. The innovative designs involve integrated architectural design, including passive solar design (respecting climatic characteristics and conducting integrated planning based on the environment, building orientation, distance between buildings, building shape, ratio of window area to wall area, and building envelope), and active solar design (integration of the solar-energy-collecting end of the system—collectors and PV panels—with the building surface—roof, wall surfaces, balconies, and sun-shading devices—and the integration of solar-energy transfer and storage equipment with the building). Some Datong-specific applications on NZESBs are suggested. A conclusion can be drawn that mining or oil and gas projects can use NZESBs to solve energy needs in Datong area if its geography, climate and buildings are exploited correctly.

Operationalizing Phytoremediation: Best Management Practices

Written by Cheryl Hendrickson on . Posted in Oil and Gas

Operationalizing Phytoremediation: Best Management PracticesFor at least three decades, plants and their associated microbes have been experimentally shown to extract, degrade and volatilize some contaminants of concern (CoC). But the greater promise of phytoremediation to be used widely and effectively has yet to be realized. One of the principal reasons is the gap between experimental and operational applications. Without effective operationalization, many projects fail and confidence is lost in the efficacy of the technology.

Several obstacles have materialized in the process of commercializing phytoremediation that have prevented this technology from being widely adopted: lack of field-based research on techniques; lack of qualified persons for design, installation and management; and few incentives to share BMPs among commercial providers. Each will be discussed below.

Seven Practical Steps to Safer Truck Driving

Written by Oil, Gas, and Mining on . Posted in Safety

Slick driving conditions due to snow, ice, and freezing rain is a common cause for overturned trucks.
Slick driving conditions due to snow, ice, and freezing rain is a common cause for overturned trucks.

Transporting oil and gas or mining and moving rock requires trucks and lots of them traveling long distances. Trucks also supply needed equipment, water, and any number of necessary supplies to make field operations run smoothly. Without skilled truckers, the oil, gas, and mining industries might as well pack up and go home. Skilled is emphasized because the vast majority of drivers powering the big rigs are about as far removed from the regular car driver as an air force pilot is from a kite flyer. But, there are also a few among the vast army of professionals who are not as well trained or should just plain know better. That is where the epic fail photographs come into play of trucks stuck in impossible angles either on or off the road.

The Role of High Density Polyethylene (HDPE) Lined Ponds in Treating Water for the Oil and Gas Industry

Written by Neil C. Nowak on . Posted in Volume 1 - Issue 2

The Role of High Density Polyethylene (HDPE) Lined Ponds in Treating Water for the Oil and Gas IndustryThe problem to be solved is the disposal of millions of liters (gallons) of production water and flow-back water generated annually from the Rocky Mountain Region oil and gas industry in an environmentally-safe, low-cost, and efficient manner. One such technology used is evaporation of the water in lined containment ponds after separation and removal of the hydrocarbon component from the water. After removal of the hydrocarbons via oil/water separation equipment, the water is “cleaned” further by being evaporated and returned to the hydrologic cycle, allowing the brine and suspended solids to be settled or precipitated to the bottom.

Three projects—in Cisco, Utah, Dad, Wyoming, and Cheyenne, Wyoming—were designed as case studies to evaporate water in a series of geomembrane-lined ponds. The projects use high-density polyethylene (HDPE) as the top layer to protect the groundwater and enhance evaporation.

Improving Mine Rehabilitation Success Through Microbial Management

Written by Howard Wildman on . Posted in Volume 1 - Issue 2

Improving Mine Rehabilitation Success Through Microbial ManagementAt present there are 441 operating mines in Australia mining commodities such as coal, mineral sands, iron ore, base, light and precious metals, uranium, and diamonds (Geoscience Australia, 2013). A significant number of these have an open cut or surface component to them. Open cut mines are usually easier, cheaper, and quicker to bring into production than underground mines, but often have a relatively short life-span, after which it may become necessary to move to underground mining to access deeper commodities.

Government authorization must be obtained to mine Crown or private land in Australia and land disturbed by mining activities must be returned to a sustainable post-mining land use. In more recent times, miners usually undertake progressive rehabilitation programs where mine closure planning is developed within the initial stages of mine operations rather than only being considered after mining ceases; however, Australia also has a legacy of unplanned mine closures, unsafe workings, hazardous mine sites, and unreclaimed lands, resulting from previously inadequate or non-existent mine closure practices and legislation (Smith, 2007). For example, in New South Wales alone there were more than 550 derelict mine sites requiring rehabilitation in 2008 (Nolan, 2008) where no individual or company is held responsible for their management or rehabilitation and no particular government agency has statutory responsibility for their rehabilitation (New South Wales Government, 2013). To minimize the risk of future derelict mines occurring, current mines are strictly regulated and must lodge a security deposit to cover rehabilitation costs if the mine becomes insolvent.

Key Aspects for Successful Design and Implementation of Passive Water Treatment Systems

Written by Monique Haakensen, Vanessa Pittet, Michael M. Spacil, James W. Castle, John H. Rodgers Jr. on . Posted in Mining

Aerial view of natural wetlands at Fortune Mineral’s NICO siteWater treatment has been implemented for decades to treat water supplies as well as “wastewater” from a variety of sources. Noteworthy are successes treating challenging contaminated waters, including industrial sources, mining influenced waters, and oil and gas produced waters. Passive water treatment is a process of simultaneously or sequentially mitigating contaminants and/or acidity and physicochemical properties in a man-made system. This is achieved by capitalizing on biological, geochemical, and coupled biogeochemical reactions, followed by the physical removal and sequestration of constituents. In its truest form, a passive water treatment system (PWTS) does not require power or chemicals after construction and can be designed as a sustainable system lasting for decades or longer with minimal intervention or maintenance. For waters that contain constituents of concern that are not amenable to treatment by naturally occurring biological, physical, or chemical pathways (e.g. sodium, chloride), hybrid or semipassive systems can be developed that incorporate energy driven processes, such as reverse osmosis coupled with passive water treatment.

Big Willy’s Frac Attack - A Meal Fit for an Oilman

Written by Oil, Gas, and Mining on . Posted in Lifestyle and Culture

Are you up to the challenge of Big Willy’s Frac Attack?
Are you up to the challenge of Big Willy’s Frac Attack?

Big oil is surging in North Dakota and so are the appetites of the oil rig workers who have made North Dakota a global powerhouse in production. Big Willy’s in Williston has decided to meet the challenge of satisfying the appetites of the hard working oilmen who have spent a long day on the rig.

Environmental Issues Related to Enhanced Production of Natural Gas by Hydraulic Fracturing

Written by John Walton and Arturo Woocay on . Posted in Volume 1 - Issue 1

Environmental Issues Related to Enhanced Production of Natural Gas by Hydraulic Fracturing

Hydraulic fracturing occurs when high pressure fluids primarily consisting of water and sand are pumped at high pressure into subsurface formations, typically shale that contains natural gas and/or oil. The high pressure fluid causes the rock to fracture. The new fractures increase the surface area of the shale and better interconnect previously existing fractures, allowing more natural gas and/or oil to be pumped from the formation. Modern hydraulic fracturing, referred to as “fracking,” is an evolving technology that largely began after 2000 and has significantly increased natural gas production in the United States in the past five years with corresponding decreases in natural gas prices.

Celebrating Oilfield Workers in Song

Written by Oil, Gas, and Mining on . Posted in Lifestyle and Culture

Trace Adkins worked six years on an oil rig
Trace Adkins worked six years on an oil rig.

According to Energy Tomorrow, 9.8 million Americans are directly involved in the oil and gas industry but where is the music celebrating their lives? You wouldn’t have to look far for country music about cowboys but are there nearly ten million of them?

New SAGD Technologies Show Promise in Reducing Environmental Impact of Oil Sand Production

Written by Vicki Lightbown on . Posted in Volume 1 - Issue 2

New SAGD Technologies Show Promise in Reducing Environmental Impact of Oil Sand ProductionIn Alberta, 80 percent, or roughly 135 billion barrels, of the oil sands are buried deep below the surface and are not accessible by open pit mining. To access these valuable resources, industries use an in-situ extraction method called Steam-Assisted Gravity Drainage (SAGD). Because in-situ extraction takes place mainly under the Earth’s surface, less land is disturbed during the extraction process than surface mining.

In 2012, Alberta’s total in-situ bitumen production was about 990,000 barrels per day, a 16 percent increase over 2011. This accounts for 52 percent of Alberta’s total crude bitumen production. By 2022 in-situ production is expected to reach 2.2 million barrels per day.

SAGD is a thermal in-situ production process where parallel wells are drilled horizontally into an underground bitumen reservoir. Steam is produced at the surface and injected into the reservoir through the shallower of the two wells (the injection well). The steam heats the bitumen to a point where gravity allows it to flow down to the lower well (the producer well) where the mixture of bitumen and water is then pumped to the surface. The water and bitumen are separated at the surface.

Preventing Erosion on Area-Wide and Linear Mine Sites: Working From the Top Down

Written by Mike Harding on . Posted in Volume 1 - Issue 2

Preventing Erosion on Area-Wide and Linear Mine Sites: Working From the Top DownPollutants in the environment are most often just resources that are out of place. Soil erosion turns valuable topsoil into a pollutant: sediment. Protection and/or preservation of topsoil is essential for timely, cost-effective reclamation and restoration of mined areas. Where topsoil cannot be removed and replaced in a progressive manner, it should be stockpiled and protected until such time it can be placed and redistributed on re-graded mined areas. This principle applies not only to area-wide activities—such as strip mining—but also to linear, ancillary areas such as roads and slurry pipeline rights-of-way. Everything that is needed for successful establishment of stabilizing vegetation in final reclamation is contained in the upper most layers of the soil—seeds, viable plant roots, soil bacteria, nutrients. Take care of your topsoil . . . and your topsoil will take care of you.

North Dakota Produces More Than One Million Barrels of Oil in 2014

Written by Oil, Gas, and Mining on . Posted in Oil and Gas

The red arrow points to the visible glow of nighttime drilling on North Dakota’s Bakken shale formation
The red arrow points to the visible glow of nighttime drilling on North Dakota’s Bakken shale formation. What is surprising is how this bright nighttime activity stands out from the normally dark prairie and rivals the lighting of more eastern cities.

April 2014 witnessed a key milestone in North Dakota’s oil production when it surpassed one million barrels a day. North Dakota has tripled its oil production in the last three years, with an average daily increase of 3,000 barrels. Texas and North Dakota together account for 48% of domestic oil production. However, Texas has long occupied the national consciousness as being the domestic king of oil production. Think of Dallas and JR Ewing with his big hat, office, and giant oilman swagger.

Legal Basics for CO2 Enhanced Oil Recovery

Written by Marie Bradshaw Durrant on . Posted in Volume 1 - Issue 2

Legal Basics for CO2 Enhanced Oil RecoveryIt is rare to find an energy issue that the Natural Resources Defense Council (NRDC) and the American Petroleum Institute (API) agree upon; however, both organizations endorse enhanced oil recovery through carbon dioxide flooding (CO2 EOR). This is because CO2 EOR has the potential both to facilitate the extraction of millions of barrels of additional oil from existing well sites and to address climate change by providing economic incentives to capture CO2, the most ubiquitous greenhouse gas. As explained by NRDC:

The country has a significant, untapped win-win-win opportunity to stimulate our economy and reduce our dependence on imported oil while actually helping to protect wild places and reduce global warming pollution: a process known as carbon dioxide enhanced oil recovery (CO2-EOR). According to industry research, CO2-EOR would give America access to large, domestic oil resources— potentially more than four times the proven U.S. reserves, or up to 10 full years of our total national consumption.

Chocolate Smoothies and Oil Spill Cleanup

Written by Oil, Gas, and Mining on . Posted in Oil and Gas

Oil accumulating on the coast of Louisiana during the Deep Horizon oil spill in the Gulf of Mexico.
Oil accumulating on the coast of Louisiana during the Deep Horizon oil spill in the Gulf of Mexico.

No one disputes that an oil spill at sea is one of the nastier types of industrial accidents. Certainly, no oil company wants this to happen and works hard to prevent it as damage to the environment, negative public reaction, increased government scrutiny, and a big hit to company finances are all probable outcomes for such an event. The spreading oil sheen at the ocean’s surface is a visible marker of the harm being done to marine wildlife, fisheries, and the fouling of nearby beaches, coastal marshes, and other ecologically sensitive areas. Deeper in the water column more harm is done that is less well understood than what is more easily observed at the surface. During the Deepwater Horizon oil spill in the Gulf of Mexico scientists discovered underwater oil plumes, some nearly 10 miles long, which depleted oxygen and harmed ocean life. Moreover, oil accumulated on the sea floor and damaged coral and other ocean-floor dwelling organisms.

The Perfect Symmetry: Railways and Oil Production

Written by Oil, Gas, and Mining on . Posted in Oil and Gas

Weekly US Crude Oil Production

Quite simply: As crude oil production surges so does the need for rail transportation of that oil. The very same observation applies to natural gas production. In 2008, U.S. Class 1 railroads dealt with 9,500 carloads of crude oil; in 2013 that number increased to 407,761 carloads. That is a whopping forty-three fold increase in rail traffic! Each carload holds approximately 30,000 gallons of oil. And while pipelines offer an alternative to oil transport by rail, the pipeline infrastructure has not dramatically increased its capacity to accommodate the enormous increase in American and Canadian production. Railroads also offer a geographic flexibility to help oil reach refineries located across the U.S.

Underwater Conventional and Unconventional Oil and Gas in the Arctic

Written by Andrew Palmer on . Posted in Volume 1 - Issue 1

The Kikeh SPAR during the upending operationHydrocarbons under the Arctic and sub-Arctic seas have been known about for a long time. Gas and oil were found first in the northward extension of the Prudhoe Bay province and in the Canadian Arctic Islands. Those discoveries were followed by further finds in the Barents Sea, the Pacific to the east of Sakhalin, off Newfoundland and in Davis Strait, and in the northern Caspian Sea (where despite its low latitude many of the ice problems found further north are still present). Many areas of the Arctic seas have not been explored. Currently there is exploration in the Kara Sea and the Chukchi Sea.

The potential difficulties are formidable. It will be essential that production schemes be safe against any possibility of environmental pollution. Some environmental campaigners are viscerally opposed to any Arctic development. They can reliably be anticipated to oppose every project on principle and will deploy every argument that can be dreamed up, whether scientifically credible or not. The current controversy over the Keystone pipeline to bring tar-sands crude to the United States illustrates the political influence of that lobby. Nervousness about any petroleum development offshore has been heightened by the recent spill in the Gulf of Mexico. It is being pointed out that that accident occurred in good weather in the early summer and that the immense resources of people and equipment in the Gulf could immediately be brought into action. In the Arctic, the response would inevitably be less prompt, particularly in the long winter.

Titan - The Planet-Sized Hydrocarbon Factory

Written by Oil, Gas, and Mining on . Posted in Oil and Gas

A view of Titan’s north polar regions with liquid hydrocarbon seas.

Since 2004, the Cassini Satellite has been orbiting Saturn and its moons and the surprises are spectacular. Cassini can determine the chemical composition of materials by the way they absorb and reflect infrared light. One of Saturn’s moons, Titan, shares the unique honor with Earth as being the only bodies in the Solar System to have a stable liquid at its surface. But while Earth’s surface is mainly water, Titan’s is mainly methane and other hydrocarbons. Instead of a water cycle, Titan is a planet-sized hydrocarbon factory, with hydrocarbon rains that collect in vast seas and solid dunes near the equator. The accompanying photo shows several lakes (dark spots) near Titan’s northern polar region, several of which are larger than Lake Michigan, and one sea (Ligeria Mare) rivals the area of the Caspian Sea.

Economic Value of Marcellus Shale Gas in the Delaware Basin

Written by Gerald J. Kauffman and Andrew R. Homsey on . Posted in Volume 1 - Issue 1

Economic Value of Marcellus Shale GasThrough modernization of horizontal drilling and hydraulic fracturing technology, natural gas has become a plentiful, inexpensive, and relatively clean-burning domestic resource that provides a quarter of U.S. electric power needs and promises to reduce reliance on foreign oil. The 350-million-year-old Marcellus Shale Formation covers 54,000 mi. in West Virginia, Ohio, Maryland, Pennsylvania, and New York. It is thought to be the third largest natural gas reserve in the world. Approximately 9% of the Marcellus shale lies in the upper third of the Delaware Basin in a watershed that supplies drinking water to 16 million people (5% of the U.S. population) in Delaware, New Jersey, New York, and Pennsylvania, including New York City and Philadelphia, the first and seventh largest metropolitan economies in the nation. Almost ¾ of the Marcellus shale lies in New York and Pennsylvania where drilling has generated millions of jobs and billions of dollars of wages in Pennsylvania alone.

Ownership of Abandoned or Dormant Minerals: A Comparison of Pennsylvania and Ohio Law

Written by Michael K. Vennum and Kristin M. McCormish on . Posted in Volume 1 - Issue 2

Ownership of Abandoned or Dormant Minerals: A Comparison of Pennsylvania and Ohio LawCurrently, Pennsylvania and Ohio are experiencing a boom in the production of natural gas and by-products from their respective deep shale plays. In order to explore and produce that natural gas, energy companies are generally required to obtain leases from the respective owners of the natural gas. Because Pennsylvania and Ohio permit the severance of minerals from the surface estate, the owners of the subsurface natural gas may not necessarily be the owners of the surface acreage. Often, the severance of the subsurface interests occurred anywhere from decades to a century ago, creating difficulty in identifying and locating the proper, contemporary owners. In order to combat such an obstacle, thus allowing for the proper leasing and production of the natural gas, both Pennsylvania and Ohio have enacted dormant mineral statutes; however, the laws of each state differ greatly as to how the dormant minerals are vested and consequently leased. This paper provides information as to Pennsylvania’s Dormant Oil and Gas Act (the “DOGA”); the procedures that must be followed in order for an energy company to properly lease unlocatable individuals who purportedly have abandoned their mineral interests or allowed those interests to become dormant; possible alternatives to filing a DOGA action; and current legislation being reviewed by the Pennsylvania General Assembly intended to amend the DOGA. Further, the authors provide information as to Ohio’s Dormant Mineral Act (the “DMA”), its legislative history, and the DMA’s current applicability pursuant to various trial and, albeit few, appellate court decisions attempting to interpret the mechanisms of the DMA.

How a Marine Meteorologist Can Help Your Offshore Oil and Gas Operations? Or Why Use a Marine Meteorologist?

Written by Jill F. Hasling on . Posted in Volume 1 - Issue 2

How a Marine Meteorologist Can Help Your Offshore Oil and Gas Operations? Or Why Use a Marine Meteorologist?Companies that must perform ocean transport, services, or construction should use a marine meteorologist when time means money. I have been involved in marine and tropical marine weather forecasting, hindcasting, and research for 40 years and the key to getting the most out of your marine meteorologist is communication. Weather Research Center has found that a good communication system between your operational teams and marine meteorologist operations can help to avoid or minimize costly weather impacts. Your meteorologist should be a Board Certified Consulting Meteorologist [CCM], a meteorologist certified by the American Meteorological Society, a Royal Meteorological Society Chartered Meteorologist [CMet], or a Qualified Environmental Professional [QEP] by the Institute for Professional Environmental Practice.

The key to understanding the impact of weather on your operations is to have dialogue where you communicate to the marine meteorologists your critical operating limits, weather window needs, and provide daily weather observations. This enables the meteorologists to provide you with information and forecasts that are tailored to your specific needs. The meteorologist should have a knowledge of your operation and how the weather can impact your operations in order to find the weather windows to provide safe operating conditions.

Technical Challenges for Solution Mining and Salt Cavern Storage to Meet Future Energy and Minerals Demand, and Solution Mining Research Institute's (SMRI) Role

Written by John Voigt, Gérard Durup, and Fritz Crotogino on . Posted in Volume 1 - Issue 1

SMRI obtained blow-out data from cavern MB#1, Moss Bluff, TX for research

Salt deposits are numerous and found in most regions of the world. The best salt deposits for both salt production and cavern storage tend to be either the thickest bedded salt deposits or salt domes. Without getting into the geology, salt domes are formed as bedded salt is deeply buried and compacted by sediment. The less dense salt rises toward the surface to form massive plugs which can be several miles in diameter by 10 miles deep. Those familiar with U.S. Gulf Coast oil and gas geology know that the Gulf region has over 500 salt domes, many of which have produced oil and gas from traps on the flanks of the domes. Both bedded salt and salt domes are of quiet but great economic importance worldwide, supplying salt as basic feedstock to many chemical production facilities, winter road deicing, water treatment, and food processing.

Taxation Without Representation or the Tea Party Reborn

Written by Oil, Gas, and Mining on . Posted in Editorial

The Sons of Liberty dressed as Native Americans dump tea into Boston Harbor
The Sons of Liberty dressed as Native Americans dump tea into Boston Harbor.

It was not a mob that destroyed the tea, but sober citizens. It was not a mob that were spectators of the scene, but a well-behaved audience looking upon a serious and most significant pantomime. It was the work of patriotic men, encouraged by patriotic citizens, who were determined not to be trifled with any longer……………
- From the Boston Historical Society

Seasonal Strategies for Evacuation From Offshore Structures in the Beaufort Sea

Written by Anne Barker, Garry Timco, Antonio Simões Ré, and Brian Wright on . Posted in Volume 1 - Issue 1

TEMPSC trials in pack ice

There are vast resources of both gas and oil in the Canadian Beaufort Sea; however, due to its harsh environment, this region presents unique challenges for evacuation and rescue. An installation in this environment will be subjected to several different ice regimes throughout the year and each must be considered in the design of the escape, evacuation, and rescue (EER) systems. The new ISO Arctic Offshore Structures standard (ISO, 2010) instructs that the level of safety at an offshore structure shall be the same year-round. For evacuation in particular, the standard also recommends having preferred (usually a helicopter), primary, and secondary evacuation strategies in place (Poplin et al, 2011). Approaches to evacuation can include direct (dry), indirect (semi-dry), or wet methods. Additionally, previous studies have shown that a single system for evacuation is not sufficient for the Canadian Arctic environment (see e.g. Wright et al., 2003a, 2003b).

Whoever Commands the Sea, Commands the Trade...

Written by Oil, Gas, and Mining on . Posted in Editorial

Competing claims in the South China Sea

China is now actively drilling in waters claimed by Vietman and has positioned a giant oil rig that is approximately 150 miles from Vietnam's coast. International maritime law considers waters within 200 miles of a country’s borders to be within its exclusive economic zone. From China’s perspective the drilling site is 225 miles from its Hainan Island, which is connected by bridge to the Chinese mainland, but only 30 miles from the disputed Paracel Islands, which is claimed by both Vietnam and China. The stakes are high for both countries as oil and natural gas reserves in the South China Sea are thought to be abundant. China now claims roughly 90% of the South China Sea and has maritime disputes in the region with Vietnam, the Philippines, Brunei, Malaysia, Indonesia, and Taiwan. China also has territorial disputes in the East China Sea (not shown on the map) with South Korea and Japan.

Assessment of Oil and Gas Industry Economic and Fiscal Impacts in Colorado

Written by Brian Lewandowski and Richard Wobbekind on . Posted in Volume 1 - Issue 1

Commodity Prices 2000–2012The oil and gas industry, along with nearly all extraction industries, inherently provides substantial economic benefits due to its integrated supply chain, high-wage jobs, and propensity to sell nationally and globally. It brings in outside investment and often operates in rural areas where high-wage jobs are scarce and industry is fleeting.

Much of Colorado’s oil and gas is sold outside of the state, contributing wealth to owners, employees, governments, and schools, all of which are beneficiaries of oil and gas revenues. In 2011, Colorado’s oil and gas industry recorded $10.5 billion in production value, accounting for some 27,300 direct drilling, extraction, and support jobs with average annual wages in excess of $105,000. Coupled with the oil and gas supply chain within Colorado—transportation, refining, wholesalers, parts manufacturers, and gasoline stations—direct employment totaled nearly 49,400 jobs, with average wages over $80,000, which is 65% higher than the state average for all industries. Collectively, this industry contributed nearly $3.8 billion in employee income to Colorado households in 2011, or 2.9% of total Colorado salary and wages. In addition, $664 million went to private land owners in 2011, assuming private land owners capture royalty and lease terms similar to those of the government.

Cow Farts - A Cause for Global Concern

Written by Oil, Gas, and Mining on . Posted in Editorial

Don’t let their gentle exteriors fool you. These are scary methane-producing and climate-changing machines.
Don’t let their gentle exteriors fool you. These are scary methane-producing and climate-changing machines.

Cows may appear innocent but they are not. Behind the gentle, insipid bovine exterior lurks a greenhouse gas pumping monster. That swishing tail is not really for dispersing flies, but for efficiently seeding the atmosphere with copious amounts of methane, a most damaging greenhouse gas. Oil and gas drilling and refining operations pale in comparison to this cow-tastrophe.

Shilly-Shallying Through History - Or Presidential Decision Making and the Keystone XL Pipeline

Written by Oil, Gas, and Mining on . Posted in Editorial

Engines from the Union Pacific and Central Pacific meet at Promontory Summit, Utah, on May 10, 1869.

Great nations, great peoples, and great presidents can accomplish great things once the decision to do so is made. The building of the Transcontinental Railroad, completed on May 10, 1869, and the landing of Apollo 11 on the Moon on July 20, 1969, are just two examples of such great accomplishments from American history. President Abraham Lincoln signed the Pacific Railway Act on July 1, 1862, authorizing land grants and government bonds, which amounted to $32,000 (in 1860s terms) per mile of track laid. The rail lines built by the Central Pacific and Union Pacific began a race from Sacramento, California, and Omaha, Nebraska, and linked up at Promontory Summit, Utah, in an image immortalized in the following photograph. Keep in mind that Lincoln planned for his nation’s future even while in the midst of the bloody American Civil War. Prior to the transcontinental railroad a trip across the continent to the western states took six months, an arduous journey across rivers, deserts, and mountains.

Passive Treatment of Mining Influenced Water: An Overview of Available Technologies and the Periodic Table

Written by James J. Gusek, P.E. on . Posted in Volume 1 - Issue 2

Passive Treatment of Mining Influenced Water: An Overview of Available Technologies and the Periodic TableThere are basically three kinds of passive treatment technologies for treating mining influenced water (MIW):

Abiotic, Limestone-based methods for treating net-acidic MIW have been effective in adding alkalinity; a subset of this method uses a semi-biological zone to condition MIW for subsequent limestone dissolution.

Biochemical Reactors (BCRs) are typically applicable to metal mine drainage with high acidity and a wide range of metals; this technology can function with or without plants.

Aerobic Cells containing cattails, other plants, and algae are typically applicable to MIW where iron and manganese and mild acidity are problematic and/or only trace concentrations of heavy metals occur. This method also can be used to polish biochemical oxygen demand (BOD) from BCR effluent and adsorb trace metals on to iron or manganese oxides.

Most passive treatment systems employ one or more of these cell types. For novice designers, selecting the proper technologies and arranging them in a logical sequence is a problem. This paper should provide baseline guidance. While the primary focus of the article is mining influenced water, the concepts presented may be readily transferable to process waters related to oil and gas operations.

Wastewater Recycling Key To Growth of Shale Gas Industry

Written by Richard Magnus on . Posted in Volume 1 - Issue 1

Before and after samples of drilling wastewater and pure distilled water after treatment.

Throughout history, the rise and fall of civilizations often can be linked to how they managed their water. Because there is no substitute for this life-sustaining resource, it is incumbent on modern society to avoid depleting and contaminating our finite water supply for ourselves and future generations.

Water resources worldwide are rapidly approaching capacity for human consumption alone. Meanwhile, the shift to unconventional energy production — essential to the extraction of the planet’s abundant natural gas reserves—has created an enormous demand for fresh water supplies which, in turn, produces huge volumes of contaminated wastewater unsuitable for environmental discharge.

Considerations for Controlling Unintended Release of Contaminants

Written by Steven P. K. Sternberg on . Posted in Volume 1 - Issue 1

Fugitive emissions cannot be seen by the unaided human eyeAny project that involves the use or transport of materials has the potential to release contaminants into the environment. Cleanup of these releases (intentional or not) can be very expensive and time consuming. Developing a well thought out contaminant control process before operations begin or when changing operations can reduce the overall costs and liabilities associated with the project.

A contaminant can be defined as any substance that causes harm to humans or the environment. Two main categories include inorganic compounds (lead, mercury, nickel, chlorides, sulfates) and organic compounds (benzene, toluene, ethyl-benzene, xylene, petroleum). They can be released as gases, liquids, solids, or aerosols. Once released, they can be spread out over very large areas by wind and water. The longer a release is allowed to disperse, the larger an area it will contaminate.


Oil, Gas, and Mining will explore all topics relevant to best industry practice. A primary goal will be to provide articles that help companies eliminate or severely limit the prospects for environmental damage.

Learn more about OG&M.

Latest News

April 21, 2018
The Importance of Hand Protection: Superior Gloves Offer a Superior Product

March 21, 2018
Understanding the Physics of Blowouts and Their Prevention Approaches.

February 21, 2018
New articles posted. You can now browse articles by categories.

©2018 Oil, Gas, & Mining / College Publishing  |  All Rights Reserved  |  Login  |  Website by Blue Cloud Studio